Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454456

RESUMO

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lipídeos , Mutação , Doença de Parkinson/metabolismo
2.
Forensic Sci Int ; 349: 111774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399773

RESUMO

The determination of the postmortem interval is a topic of great forensic interest. The possibility of using new technologies has allowed the study of postmortem decay of biomolecules in the determination of PMI. Skeletal muscle proteins are promising candidates because skeletal muscle exhibits slower postmortem decay compared to other internal organs and nervous tissues, while its degradation is faster than cartilage and bone. In this pilot study, skeletal muscle tissue from pigs was degraded at two different controlled temperatures, 21 °C and 6 °C, and analysed at predefined times points: 0, 24, 48, 72, 96, and 120 h. The obtained samples were analysed by mass spectrometry proteomics approach for qualitative and quantitative evaluation of proteins and peptides. Immunoblotting validation was performed for the candidate proteins. The results obtained appeared significant and identified several proteins useful for possible postmortem interval estimation. Of these proteins, PDLIM7, TPM1, and ATP2A2 were validated by immunoblotting at a larger number of experimental points and at different temperatures. The results obtained are in agreement with those observed in similar works. In addition, the use of a mass spectrometry approach increased the number of protein species identified, providing a larger panel of proteins for PMI assessment.


Assuntos
Proteínas Musculares , Mudanças Depois da Morte , Suínos , Animais , Proteólise , Projetos Piloto , Proteômica , Espectrometria de Massas , Músculo Esquelético/metabolismo , Patologia Legal/métodos
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835504

RESUMO

The molecular mechanisms of skeletal muscle adaptation to spaceflight are as yet not fully investigated and well understood. The MUSCLE BIOPSY study analyzed pre and postflight deep calf muscle biopsies (m. soleus) obtained from five male International Space Station (ISS) astronauts. Moderate rates of myofiber atrophy were found in long-duration mission (LDM) astronauts (~180 days in space) performing routine inflight exercise as countermeasure (CM) compared to a short-duration mission (SDM) astronaut (11 days in space, little or no inflight CM) for reference control. Conventional H&E scout histology showed enlarged intramuscular connective tissue gaps between myofiber groups in LDM post vs. preflight. Immunoexpression signals of extracellular matrix (ECM) molecules, collagen 4 and 6, COL4 and 6, and perlecan were reduced while matrix-metalloproteinase, MMP2, biomarker remained unchanged in LDM post vs. preflight suggesting connective tissue remodeling. Large scale proteomics (space omics) identified two canonical protein pathways associated to muscle weakness (necroptosis, GP6 signaling/COL6) in SDM and four key pathways (Fatty acid ß-oxidation, integrin-linked kinase ILK, Rho A GTPase RHO, dilated cardiomyopathy signaling) explicitly in LDM. The levels of structural ECM organization proteins COL6A1/A3, fibrillin 1, FBN1, and lumican, LUM, increased in postflight SDM vs. LDM. Proteins from tricarboxylic acid, TCA cycle, mitochondrial respiratory chain, and lipid metabolism mostly recovered in LDM vs. SDM. High levels of calcium signaling proteins, ryanodine receptor 1, RyR1, calsequestrin 1/2, CASQ1/2, annexin A2, ANXA2, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) pump, ATP2A, were signatures of SDM, and decreased levels of oxidative stress peroxiredoxin 1, PRDX1, thioredoxin-dependent peroxide reductase, PRDX3, or superoxide dismutase [Mn] 2, SOD2, signatures of LDM postflight. Results help to better understand the spatiotemporal molecular adaptation of skeletal muscle and provide a large scale database of skeletal muscle from human spaceflight for the better design of effective CM protocols in future human deep space exploration.


Assuntos
Astronautas , Músculo Esquelético , Atrofia Muscular , Voo Espacial , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fatores de Tempo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Biópsia
4.
Cells ; 11(13)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805205

RESUMO

Physical inactivity or prolonged bed rest (BR) induces muscle deconditioning in old and young subjects and can increase the cardiovascular disease risk (CVD) with dysregulation of the lipemic profile. Nutritional interventions, combining molecules such as polyphenols, vitamins and essential fatty acids, can influence some metabolic features associated with physical inactivity and decrease the reactive oxidative and nitrosative stress (RONS). The aim of this study was to detect circulating molecules correlated with BR in serum of healthy male subjects enrolled in a 60-day BR protocol to evaluate a nutritional intervention with an antioxidant cocktail as a disuse countermeasure (Toulouse COCKTAIL study). The serum proteome, sphingolipidome and nitrosoproteome were analyzed adopting different mass spectrometry-based approaches. Results in placebo-treated BR subjects indicated a marked decrease of proteins associated with high-density lipoproteins (HDL) involved in lipemic homeostasis not found in the cocktail-treated BR group. Moreover, long-chain ceramides decreased while sphingomyelin increased in the BR cocktail-treated group. In placebo, the ratio of S-nitrosylated/total protein increased for apolipoprotein D and several proteins were over-nitrosylated. In cocktail-treated BR subjects, the majority of protein showed a pattern of under-nitrosylation, except for ceruloplasmin and hemopexin, which were over-nitrosylated. Collectively, data indicate a positive effect of the cocktail in preserving lipemic and RONS homeostasis in extended disuse conditions.


Assuntos
Repouso em Cama , Ácidos Graxos Ômega-3 , Antioxidantes/farmacologia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Humanos , Masculino , Proteoma , Esfingolipídeos
5.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269570

RESUMO

Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species associated with the decelerated aging of centenarians. SLs, extracted from serum of adults (Ad, 35-37 years old), aged (Ag, 75-77 years old) and centenarian (C, 105-107 years old) women were analyzed by LC-MS/MS in combination with mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide (dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0, 22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine (Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphingomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it into glycosphingolipids.


Assuntos
Envelhecimento/sangue , Vias Biossintéticas , Ceramidas/sangue , Lipidômica/métodos , Esfingosina/sangue , Adulto , Distribuição por Idade , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Cromatografia Líquida , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Esfingolipídeos/análise , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269765

RESUMO

BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes. The study aimed to determine which proteins might contribute to preserving muscle function in these patients. Patients were subdivided, based on the absence or presence of deletions in the D8 region, into two groups, BMD1 and BMD2. Muscle extracts were analyzed by 2-D DIGE, label-free LC-ESI-MS/MS, and Ingenuity pathway analysis (IPA). Increased levels of proteins typical of fast fibers and of proteins involved in the sarcomere reorganization characterize BMD2. IPA of proteomics datasets indicated in BMD2 prevalence of glycolysis and gluconeogenesis and a correct flux through the TCA cycle enabling them to maintain both metabolism and epithelial adherens junction. A 2-D DIGE analysis revealed an increase of acetylated proteoforms of moonlighting proteins aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase that can target the nucleus promoting stem cell recruitment and muscle regeneration. In BMD2, immunoblotting indicated higher levels of myogenin and lower levels of PAX7 and SIRT1/2 associated with a set of proteins identified by proteomics as involved in muscle homeostasis maintenance.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Humanos , Músculos/metabolismo , Distrofia Muscular de Duchenne/genética , Fenótipo , Espectrometria de Massas em Tandem
7.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360799

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible neurological disease, causing motor and cognitive dysfunction and dementia. iNPH and Alzheimer's disease (AD) share similar molecular characteristics, including amyloid deposition, t-tau and p-tau dysregulation; however, the disease is under-diagnosed and under-treated. The aim was to identify a panel of sphingolipids and proteins in CSF to diagnose iNPH at onset compared to aged subjects with cognitive integrity (C) and AD patients by adopting multiple reaction monitoring mass spectrometry (MRM-MS) for sphingolipid quantitative assessment and advanced high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic analysis. The results indicated that iNPH are characterized by an increase in very long chains Cer C22:0, Cer C24:0 and Cer C24:1 and of acute-phase proteins, immunoglobulins and complement component fragments. Proteins involved in synaptic signaling, axogenesis, including BACE1, APP, SEZ6L and SEZ6L2; secretory proteins (CHGA, SCG3 and VGF); glycosylation proteins (POMGNT1 and DAG1); and proteins involved in lipid metabolism (APOH and LCAT) were statistically lower in iNPH. In conclusion, at the disease onset, several factors contribute to maintaining cell homeostasis, and the protective role of very long chains sphingolipids counteract overexpression of amyloidogenic and neurotoxic proteins. Monitoring specific very long chain Cers will improve the early diagnosis and can promote patient follow-up.


Assuntos
Hidrocefalia de Pressão Normal/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteômica , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esfingolipídeos/líquido cefalorraquidiano
8.
Antioxidants (Basel) ; 10(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802593

RESUMO

Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, VL) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo, n = 10) vs. the antioxidant cocktail treated group (Treatment, n = 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.

9.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799647

RESUMO

Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient's outcome.


Assuntos
Terapia de Reposição de Enzimas/métodos , Glucana 1,4-alfa-Glucosidase/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/terapia , Músculo Esquelético/metabolismo , Proteômica/métodos , Adulto , Autofagia , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional/métodos , Feminino , Glucana 1,4-alfa-Glucosidase/genética , Humanos , Lisossomos/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Proteínas Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Proteoma/metabolismo , Proteínas Recombinantes/uso terapêutico , Espectrometria de Massas em Tandem/métodos
10.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925229

RESUMO

Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC-MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.


Assuntos
Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/métodos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo , Proteômica/métodos , Sarcopenia/metabolismo , Fatores Sexuais , Espectrometria de Massas em Tandem/métodos
11.
World J Gastroenterol ; 26(7): 696-705, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32116417

RESUMO

Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory conditions of the gut that include Crohn's disease and ulcerative colitis. The pathogenesis of IBD is not completely unraveled, IBD are multi-factorial diseases with reported alterations in the gut microbiota, activation of different immune cell types, changes in the vascular endothelium, and alterations in the tight junctions' structure of the colonic epithelial cells. Proteomics represents a useful tool to enhance our biological understanding and to discover biomarkers in blood and intestinal specimens. It is expected to provide reproducible and quantitative data that can support clinical assessments and help clinicians in the diagnosis and treatment of IBD. Sometimes a differential diagnosis of Crohn's disease and ulcerative colitis and the prediction of treatment response can be deducted by finding meaningful biomarkers. Although some non-invasive biomarkers have been described, none can be considered as the "gold standard" for IBD diagnosis, disease activity and therapy outcome. For these reason new studies have proposed an "IBD signature", which consists in a panel of biomarkers used to assess IBD. The above described approach characterizes "omics" and in this review we will focus on proteomics.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteômica , Biomarcadores/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/patologia
12.
J Cachexia Sarcopenia Muscle ; 11(2): 547-563, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991054

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are characterized by muscle wasting leading to loss of ambulation in the first or third decade, respectively. In DMD, the lack of dystrophin hampers connections between intracellular cytoskeleton and cell membrane leading to repeated cycles of necrosis and regeneration associated with inflammation and loss of muscle ordered structure. BMD has a similar muscle phenotype but milder. Here, we address the question whether proteins at variance in BMD compared with DMD contribute to the milder phenotype in BMD, thus identifying a specific signature to be targeted for DMD treatment. METHODS: Proteins extracted from skeletal muscle from DMD/BMD patients and young healthy subjects were either reduced and solubilized prior two-dimensional difference in gel electrophoresis/mass spectrometry differential analysis or tryptic digested prior label-free liquid chromatography with tandem mass spectrometry. Statistical analyses of proteins and peptides were performed by DeCyder and Perseus software and protein validation and verification by immunoblotting. RESULTS: Proteomic results indicate minor changes in the extracellular matrix (ECM) protein composition in BMD muscles with retention of mechanotransduction signalling, reduced changes in cytoskeletal and contractile proteins. Conversely, in DMD patients, increased levels of several ECM cytoskeletal and contractile proteins were observed whereas some proteins of fast fibres and of Z-disc decreased. Detyrosinated alpha-tubulin was unchanged in BMD and increased in DMD although neuronal nitric oxide synthase was unchanged in BMD and greatly reduced in DMD. Metabolically, the tissue is characterized by a decrement of anaerobic metabolism both in DMD and BMD compared with controls, with increased levels of the glycogen metabolic pathway in BMD. Oxidative metabolism is severely compromised in DMD with impairment of malate shuttle; conversely, it is active in BMD supporting the tricarboxylic acid cycle and respiratory chain. Adipogenesis characterizes DMD, whereas proteins involved in fatty acids beta-oxidation are increased in BMD. Proteins involved in protein/amino acid metabolism, cell development, calcium handling, endoplasmic reticulum/sarcoplasmic reticulum stress response, and inflammation/immune response were increased in DMD. Both disorders are characterized by the impairment of N-linked protein glycosylation in the endoplasmic reticulum. Authophagy was decreased in DMD whereas it was retained in BMD. CONCLUSIONS: The mechanosensing and metabolic disruption are central nodes of DMD/BMD phenotypes. The ECM proteome composition and the metabolic rewiring in BMD lead to preservation of energy levels supporting autophagy and cell renewal, thus promoting the retention of muscle function. Conversely, DMD patients are characterized by extracellular and cytoskeletal protein dysregulation and by metabolic restriction at the level of α-ketoglutarate leading to shortage of glutamate-derived molecules that over time triggers lipogenesis and lipotoxicity.


Assuntos
Distrofia Muscular de Duchenne/patologia , Proteômica/métodos , Feminino , Humanos , Masculino , Espécies Reativas de Oxigênio
13.
Am J Physiol Renal Physiol ; 317(4): F1081-F1086, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461354

RESUMO

Exposure to high altitude is one of the most widely used models to study the adaptive response to hypoxia in humans. However, little is known about the related effects on micturition. The present study addresses the adaptive urinary responses in four healthy adult lowlanders, comparing urodynamic indexes at Kathmandu [1,450 m above sea level (a.s.l.); K1450] and during a sojourn in Namche Bazar (3,500 m a.s.l.; NB3500). The urodynamic testing consisted of cistomanometry and bladder pressure/flow measurements. Anthropometrics, electrocardiographic, and peripheral capillary oxygen saturation data were also collected. The main findings consisted of significant reductions in bladder power at maximum urine flow by ~30%, bladder contractility index by 13%, and infused volume both at first (by 57%) and urgency sensation (by 14%) to urinate, indicating a reduced cystometric capacity, at NB3500. In addition to the urinary changes, we found that oxygen saturation, body mass index, body surface area, and median RR time were all significantly reduced at altitude. We submit that the hypoxia-related parasympathetic inhibition could be the underlying mechanism of both urodynamic and heart rate adaptive responses to high-altitude exposure. Moreover, increased diuresis and faster bladder filling at altitude may trigger the anticipation of being able to void, a common cause of urgency. We believe that the present pilot study represents an original approach to the study of urinary physiology at altitude.


Assuntos
Altitude , Hipóxia/fisiopatologia , Fenômenos Fisiológicos do Sistema Urinário , Urodinâmica , Adulto , Antropometria , Índice de Massa Corporal , Superfície Corporal , Diurese , Eletrocardiografia , Feminino , Frequência Cardíaca , Humanos , Masculino , Oxigênio/sangue , Projetos Piloto , Bexiga Urinária/fisiopatologia , Retenção Urinária , Micção/fisiologia
14.
FASEB J ; 33(4): 5168-5180, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30620616

RESUMO

The Sarcolab pilot study of 2 crewmembers, investigated before and after a 6-mo International Space Station mission, has demonstrated the substantial muscle wasting and weakness, along with disruption of muscle's oxidative metabolism. The present work aimed at evaluating the pro/anti-inflammatory status in the same 2 crewmembers (A, B). Blood circulating (c-)microRNAs (miRs), c-proteasome, c-mitochondrial DNA, and cytokines were assessed by real-time quantitative PCR or ELISA tests. Time series analysis was performed ( i.e., before flight and after landing) at 1 and 15 d of recovery (R+1 and R+15, respectively). C-biomarkers were compared with an age-matched control population and with 2-dimensional proteomic analysis of the 2 crewmembers' muscle biopsies. Striking differences were observed between the 2 crewmembers at R+1, in terms of inflamma-miRs (c-miRs-21-5p, -126-3p, and -146a-5p), muscle specific (myo)-miR-206, c-proteasome, and IL-6/leptin, thus making the 2 astronauts dissimilar to each other. Final recovery levels of c-proteasome, c-inflamma-miRs, and c-myo-miR-206 were not reverted to the baseline values in crewmember A. In both crewmembers, myo-miR-206 changed significantly after recovery. Muscle biopsy of astronaut A showed an impressive 80% increase of α-1-antitrypsin, a target of miR-126-3p. These results point to a strong stress response induced by spaceflight involving muscle tissue and the proinflammatory setting, where inflamma-miRs and myo-miR-206 mediate the systemic recovery phase after landing.-Capri, M., Morsiani, C., Santoro, A., Moriggi, M., Conte, M., Martucci, M., Bellavista, E., Fabbri, C., Giampieri, E., Albracht, K., Flück, M., Ruoss, S., Brocca, L., Canepari, M., Longa, E., Di Giulio, I., Bottinelli, R., Cerretelli, P., Salvioli, S., Gelfi, C., Franceschi, C., Narici, M., Rittweger, J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting.


Assuntos
Inflamação/metabolismo , Proteínas Musculares/metabolismo , Voo Espacial , Astronautas , Biomarcadores/metabolismo , Citocinas/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Inflamação/imunologia , Leptina/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Projetos Piloto , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
15.
Proteomics ; 18(24): e1800278, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30353998

RESUMO

Tumor extracellular matrix (ECM) plays a pivotal role in outcome of breast cancer (BC) patients. Overexpression of 58 genes, encoding 43 structural ECM proteins, has been identified to determine a specific cluster of BC with accelerated metastatic potential only in the undifferentiated (grade III) phenotype. The scope of this study is to characterize protein repertoire able to predict patient outcome in BC according to ECM gene expression pattern and histological grade. The differential proteomic analysis is based on 2D-differential gel electrophoresis, MALDI-MS, bioinformatics, and immunoblotting. Results suggest a relationship among ECM remodeling, signal mechanotransduction, and metabolic rewiring in BCs characterized by a specific mRNA ECM signature and identified a set of dysregulated proteins characteristic of hormone receptors expression as fibrinogen-ß chain, collagen α-1(VI) chain, and α-1B-glycoprotein. Furthermore, in triple negative tumors with ECM signature, the FGG and α5ß1/αvß3 integrins increase whereas detyrosinated α-tubulin and mimecan decrease leading to unorganized integrin presentation involving focal adhesion kinase, activation of Rho GTPases associated to epithelial mesenchymal transition. In hormone receptors negative BCs characterized by a specific ECM gene cluster, the differentially regulated proteins, identified in the present study, can be potentially relevant to predict patient's outcome.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletroforese em Gel Diferencial Bidimensional/métodos , Feminino , Humanos , Gradação de Tumores
17.
NPJ Microgravity ; 4: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246141

RESUMO

Spaceflight causes muscle wasting. The Sarcolab pilot study investigated two astronauts with regards to plantar flexor muscle size, architecture, and function, and to the underlying molecular adaptations in order to further the understanding of muscular responses to spaceflight and exercise countermeasures. Two crew members (A and B) spent 6 months in space. Crew member A trained less vigorously than B. Postflight, A showed substantial decrements in plantar flexor volume, muscle architecture, in strength and in fiber contractility, which was strongly mitigated in B. The difference between these crew members closely reflected FAK-Y397 abundance, a molecular marker of muscle's loading history. Moreover, crew member A showed downregulation of contractile proteins and enzymes of anaerobic metabolism, as well as of systemic markers of energy and protein metabolism. However, both crew members exhibited decrements in muscular aerobic metabolism and phosphate high energy transfer. We conclude that countermeasures can be effective, particularly when resistive forces are of sufficient magnitude. However, to fully prevent space-related muscular deterioration, intersubject variability must be understood, and intensive exercise countermeasures programs seem mandatory. Finally, proteomic and metabolomic analyses suggest that exercise benefits in space may go beyond mere maintenance of muscle mass, but rather extend to the level of organismic metabolism.

18.
Front Mol Neurosci ; 10: 337, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114203

RESUMO

Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1-/-) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1-/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1-/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1-/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1-/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1-/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1-/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule-associated proteins 1A/1B light chain 3B (LC3B) lipidation are hallmarks of the aging process. Altogether these data indicate that the diaphragm of Col6a1-/- animal model can be considered as a model of early skeletal muscle aging.

19.
Proteomics ; 17(23-24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027377

RESUMO

This study utilizes 2D-DIGE (difference gel etrophoresis), isotope-coded protein labeling and biochemical assays to characterize protein alteration in ulcerative colitis (UC) and Crohn's disease (CD) in human epithelial cell and mucosal biopsies in inflammatory bowel disease (IBD)-affected patients. The aim of this study is to identify the key molecular signatures involved in epithelial cell structure of IBDs. In non-inflamed UC (QUC) keratins, vimentin, and focal adhesion kinase (7) increased, whereas vinculin and de-tyrosinated α-tubulin decreased; inflammation (IUC) exacerbated molecular changes, being collagen type VI alpha 1 chain (COL6A1), tenascin-C and vimentin increased. In non-inflamed CD (QCD), tenascin C, de-tyrosinated α-tubulin, vinculin, FAK, and Rho-associated protein kinase 1 (ROCK1) decreased while vimentin increased. In inflamed CD (ICD), COL6A1, vimentin and integrin alpha 4 increased. In QUC, cell metabolism is characterized by a decrease of the tricarboxylic acid cycle enzymes and a decrease of short/branched chain specific acyl-CoA dehydrogenase, fatty acid synthase, proliferator-activated receptors alpha, and proliferator-activated receptors gamma. In QCD a metabolic rewiring occurs, as suggested by glycerol-3-phosphate dehydrogenase (GPD2), pyruvate dehydrogenase E1 component subunit beta, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, and 4-trimethylaminobutyraldehyde dehydrogenase increment, while dihydrolipoyl dehydrogenase decreased. Macroautophagy is activated in QUC and IUC, with increased levels of p62, HSC70, major vault protein, myosin heavy chain 9, whereas it is blunted in QCD and ICD. The differing pattern of extracellular matrix, cytoskeletal derangements, cellular metabolism, and autophagy in UC and CD may contribute to the pathophysiological understanding of these disorders and serve as diagnostic markers in IBD patients.


Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Colite Ulcerativa/metabolismo , Colo/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Expert Rev Proteomics ; 14(9): 825-839, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28780899

RESUMO

INTRODUCTION: Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies. Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies. Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteoma/genética , Proteômica , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Exercício Físico , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...